## Math still not the answer

I wrote a quick (but not very elegant) `python` script to retrieve locally enough data from www.metacritic.com for pattern recognition purposes. The main goal is to help me decide how much I will enjoy a movie, before watching it. I included the script at the end of the post, in case you want to try it yourself (and maybe improve it too!). It takes a while to complete, although it is quite entertaining to see its progress on screen. At the end, it provides with two lists of the same length: `critics`—a list of `str` containing the names of the critics; and `scoredMovies`—a list of `dict` containing, at index `k`, the evaluation of all the movies scored by the critic at index `k` in the previous list.

For example:

**>>> critics[43]**

‘James White’

**>>> scoredMovies[43]**

{‘hall-pass’: 60, ‘the-karate-kid’: 60, ‘the-losers’: 60,

‘the-avengers-2012’: 80, ‘the-other-guys’: 60, ‘shrek-forever-after’: 80,

‘the-lincoln-lawyer’: 80, ‘the-company-men’: 60, ‘jonah-hex’: 40,

‘arthur’: 60, ‘vampires-suck’: 20, ‘american-reunion’: 40,

‘footloose’: 60, ‘real-steel’: 60}

The number of scored films by critic varies: there are individuals that gave their opinion on a few dozen movies, and others that took the trouble to evaluate up to four thousand flicks! Note also that the names of the movies correspond with their web pages in www.metacritic.com. For example, to see what critics have to say about the “Karate Kid” and other relevant information online, point your browser to www.metacritic.com/movie/**the-karate-kid**. It also comes in very handy if there are several versions of a single title: *Which “Karate Kid” does this score refer to, the one in the eighties, or Jackie Chan’s?*

Feel free to download a copy of the resulting data [here] (note it is a large file: 1.6MB).

But the fact that we have that data stored locally allows us to gather that information with simple `python` commands, and perform many complex operations on it.

## Sometimes Math is not the answer

I would love to stand corrected in this case, though. Let me explain first the reason behind this claim—It will take a minute, so bear with me:

Say there is a new movie released, and you would like to know how good it is, or whether you and your partner will enjoy watching it together. There are plenty of online resources out there that will give you enough information to make an educated opinion but, let’s face it, you will not have the complete picture unless you actually go see the movie (sorry for the pun).

For example, I fell for “The Blair Witch Project:” their amazing advertising campaign promised me thrill and originality. On top of that, the averaged evaluation of many movie critics that had access to previews claimed that this was a flick not to be missed… Heck, I even bought the DVD for my sister before even watching it!—She and I have a similar taste with respect to movies. The disappointment was, obviously, epic. Before that, and many a time afterwards, I have tripped over the same stone. If nothing else, I learned not to trust commercials and sneak previews any more (“Release the Kraken!,” anyone?)

The only remaining resource should then be the advice of the knowledgeable movie critics—provided you trust on their integrity, that is. Then it hit me: My taste in movies, so similar to my sister’s, could be completely different to that of the “average critic”. Being that the case, why would I trust what a bunch of experts have to say? The mathematician in me took over, and started planning a potential algorithm:

### We have moved!

### In the news:

### Recent Posts

- Migration
- Computational Geometry in Python
- Searching (again!?) for the SS Central America
- Jotto (5-letter Mastermind) in the NAO robot
- Robot stories
- Advanced Problem #18
- Book presentation at the USC Python Users Group
- Areas of Mathematics
- More on Lindenmayer Systems
- Some results related to the Feuerbach Point
- An Automatic Geometric Proof
- Sympy should suffice
- A nice application of Fatou’s Lemma
- Have a child, plant a tree, write a book
- Project Euler with Julia
- Seked
- Nezumi San
- Ruthless Thieves Stealing a Roll of Cloth
- Which one is the fake?
- Stones, balances, matrices
- Buy my book!
- Trigonometry
- Naïve Bayes
- Math still not the answer
- Sometimes Math is not the answer
- What if?
- Edge detection: The Convolution Approach
- OpArt
- So you want to be an Applied Mathematician
- Smallest Groups with Two Eyes
- The ultimate metapuzzle
- Where are the powers of two?
- Geolocation
- Boundary operators
- The Cantor Pairing Function
- El País’ weekly challenge
- Math Genealogy Project
- Basic Statistics in sage
- A Homework on the Web System
- Apollonian gaskets and circle inversion fractals
- Toying with basic fractals
- Unusual dice
- Wavelets in sage
- Edge detection: The Scale Space Theory
- Bertrand Paradox
- Voronoi mosaics
- Image Processing with numpy, scipy and matplotlibs in sage
- Super-Resolution Micrograph Reconstruction by Nonlocal-Means Applied to HAADF-STEM
- The Nonlocal-means Algorithm
- The hunt for a Bellman Function.
- Presentation: Hilbert Transform Pairs of Wavelets
- Presentation: The Dual-Tree Complex Wavelet Transform
- Presentation: Curvelets and Approximation Theory
- Poster: Curvelets vs. Wavelets (Mathematical Models of Natural Images)
- Wavelet Coefficients
- Modeling the Impact of Ebola and Bushmeat Hunting on Western Lowland Gorillas
- Triangulations
- Mechanical Geometry Theorem Proving

### Pages

- About me
- Books
- Curriculum Vitae
- Research
- Teaching
- Mathematical Imaging
- Introduction to the Theory of Distributions
- An Introduction to Algebraic Topology
- The Basic Practice of Statistics
- MA598R: Measure Theory
- MA122—Fall 2014
- MA141—Fall 2014
- MA142—Summer II 2012
- MA241—Spring 2014
- MA242—Fall 2013
- Past Sections
- MA122—Spring 2012
- MA122—Spring 2013
- Lesson Plan—section 007
- Lesson Plan—section 008
- Review for First part (section 007)
- Review for First part (section 008)
- Review for Second part (section 007)
- Review for Third part (section 007)
- Review for the Second part (section 008)
- Review for the Fourth part (section 007)
- Review for Third and Fourth parts (section 008)

- MA122—Fall 2013
- MA141—Spring 2010
- MA141—Fall 2012
- MA141—Spring 2013
- MA141—Fall 2013
- MA141—Spring 2014
- MA141—Summer 2014
- MA142—Fall 2011
- MA142—Spring 2012
- MA241—Fall 2011
- MA241—Fall 2012
- MA241—Spring 2013
- MA242—Fall 2012
- MA242—Spring 2012
- First Midterm Practice Test
- Second Midterm-Practice Test
- Third Midterm—Practice Test
- Review for the fourth part of the course
- Blake Rollins’ code in Java
- Ronen Rappaport’s project: messing with strings
- Sam Somani’s project: Understanding Black-Scholes
- Christina Papadimitriou’s project: Diffusion and Reaction in Catalysts

- Problem Solving
- Borsuk-Ulam and Fixed Point Theorems
- The Cantor Set
- The Jordan Curve Theorem
- My oldest plays the piano!
- How many hands did Ernie shake?
- A geometric fallacy
- What is the next number?
- Remainders
- Probability and Divisibility by 11
- Convex triangle-square polygons
- Thieves!
- Metapuzzles
- What day of the week?
- Exact Expression
- Chess puzzles
- Points on a plane
- Sequence of right triangles
- Sums of terms from Fibonacci
- Alleys
- Arithmetic Expressions
- Three circles
- Pick a point
- Bertrand Paradox
- Unusual dice
- El País’ weekly challenge
- Project Euler with Julia

- LaTeX

### Categories

### Archives

- November 2014
- September 2014
- August 2014
- July 2014
- June 2014
- March 2014
- December 2013
- October 2013
- September 2013
- July 2013
- June 2013
- April 2013
- January 2013
- December 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- November 2011
- September 2011
- August 2011
- June 2011
- May 2011
- April 2011
- February 2011
- January 2011
- December 2010
- May 2010
- April 2010
- September 2008
- September 2007
- August 2007

### @eseprimo

- About to place notes for my upcoming Nonlinear Optimization course online in @overleaf #LaTeX @xkcdComic @SymPy… twitter.com/i/web/status/8… 8 hours ago
- I'm using @overleaf, the free online collaborative LaTeX editor - it's awesome and easy to use! overleaf.com/signup?ref=b35… 9 hours ago
- RT @rgbkrk: Download nteract 0.2.0, install pandas >= v0.20, set `pd.options.display.html.table_schema = True`, display a table, provide fe… 3 days ago
- Just got the #totalsolareclipse glasses that @UofSC issues to all employees. Now, time for some #finalexam… twitter.com/i/web/status/8… 1 week ago
- @jamestanton I think not. Grab a circle, divide in equal six arcs, sub each other arc by a segment. Star-shaped con… twitter.com/i/web/status/8… 1 week ago
- RT @jmitani: 錯視立体で有名な杉原厚吉先生と昼休憩にいろいろ話をさせていただきました。 杉原先生の、鏡に映すと違う立体に見える作品が会場に展示されています。 写真は、4つ並んだハートの断面が、鏡の中ではスペード、ハート、クラブ、ダイヤに見えるというもの。 https… 1 week ago
- RT @UofSC: Wondering what the 🐿 and 🐜 will be up to during #TotalEclipseCAE? So is #UofSC naturalist, Rudy Mancke. sc.edu/eclipse… 1 week ago
- Having the ability to include @xkcdComic style graphs with #tikz (#latex) or with @matplotlib (#Python) in class no… twitter.com/i/web/status/8… 2 weeks ago
- Just posted a photo instagram.com/p/BW5HP5on1NPW… 4 weeks ago
- RT @thecommongreen: The only human, alive or dead, not contained within the frame of this photo is Michael Collins. The ultimate anti-selfi… 1 month ago
- How many different file types? $ find Dropbox/Documents/Research/ -print0 | xargs -0 file -b | LC_ALL='C' sort | LC… twitter.com/i/web/status/8… 1 month ago
- Let's try this again: how many lines of #Python have you written lately? $ find Dropbox/ -iname "*.py" -print0 |… twitter.com/i/web/status/8… 1 month ago
- RT @lineofmargarets: My first week at @UofSC, I was sent to interview a math professor. Gulp. I gave it a go: Tackling the messes https://t… 1 month ago
- $ find Dropbox/ -iname "*.py" -print0 | xargs -0 wc | tail -1 630876 2301324 21962525 total #python #bash #xargs #find #wc #tail 1 month ago
- RT @ArtsSciencesUSC: Mathematics professor Frank Thorne looks for answers to messy problems ow.ly/Hpoo30dGFwf 1 month ago
- Wait. @RAEinforma accepting #iros cause nbdy uses correct expr? This is like accepting $(fg)'=f'g'$ #calculus… twitter.com/i/web/status/8… 1 month ago
- RT @doctorow: Free on the Internet Archive: 255 issues of Galaxy Magazines, 1950-1976 boingboing.net/2017/07/16/emb… https://t.co/jlspVVfDpf 1 month ago
- RT @escabellat: Things are getting a little tense https://t.co/EjewHe5Gsx 1 month ago
- RT @Sopas: Spain is different doi.org/10.1016/j.meas… @CientificoenEsp https://t.co/1VCwf7pqT0 1 month ago
- RT @emmavaast: Really cool! Algorithm generates optimal origami folding pattern to produce any 3-D structure buff.ly/2sNRJmX https:… 1 month ago

### Math updates on arXiv.org

- Portfolio Optimization with Entropic Value-at-Risk. (arXiv:1708.05713v1 [q-fin.PM])
- Global analysis of an infection age SEI model with a large class of nonlinear incidence rates. (arXiv:1708.05726v1 [math.DS])
- Some nilpotence theorems for Chow motives. (arXiv:1708.05731v1 [math.AG])
- Geometry Of The Expected Value Set And The Set-Valued Sample Mean Process. (arXiv:1708.05735v1 [math.PR])
- Auxiliary Space Multigrid Method Based on Additive Schur Complement Approximation for Graph Laplacian. (arXiv:1708.05738v1 [math.NA])
- Dynamic Connectivity Game for Adversarial Internet of Battlefield Things Systems. (arXiv:1708.05741v1 [cs.IT])
- Universal Series for Hilbert Schemes and Strange Duality. (arXiv:1708.05743v1 [math.AG])
- Universism and Extensions of V. (arXiv:1708.05751v1 [math.LO])
- Nodal intersections and Geometric Control. (arXiv:1708.05754v1 [math.AP])
- Zero Entropy Interval Maps And MMLS-MMA Property. (arXiv:1708.05755v1 [math.DS])

### Computational Geometry updates on arXiv.org

- Computer-aided position planning of miniplates to treat facial bone defects. (arXiv:1708.05711v1 [cs.CV])
- Minimum Hidden Guarding of Histogram Polygons. (arXiv:1708.05815v1 [cs.CG])
- Balanced partitions of 3-colored geometric sets in the plane. (arXiv:1708.06062v1 [cs.CG])
- Helly Numbers of Polyominoes. (arXiv:1708.06063v1 [cs.CG])
- Geodesic Order Types. (arXiv:1708.06064v1 [cs.CG])
- 3D Visibility Representations of 1-planar Graphs. (arXiv:1708.06196v1 [cs.CG])
- Algorithms for Covering Multiple Barriers. (arXiv:1704.06870v2 [cs.CG] UPDATED)

### sagemath

- An error has occurred; the feed is probably down. Try again later.